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A sharp transition between a trivial 1D BTW model
and self-organized critical rice-pile model
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Abstract. A one-dimensional model of a rice-pile is numerically studied for different driving mechanisms.
We found that for a sufficiently large system, there is a sharp transition between the trivial behaviour of
a 1D BTW model and self-organized critical (SOC) behaviour. Depending on the driving mechanism, the
self-organized critical rice-pile model belongs to two different universality classes.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
64.60.Ht Dynamic critical phenomena – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

In their pioneering work [1] Bak, Tang and Wiensenfeld
introduced the concept of self-organized criticality (SOC)
to describe the behaviour of extended dissipative dynam-
ical systems. The paradigm of SOC is an idealised sand-
pile where grains added to a pile dissipate their poten-
tial energy through avalanches with no characteristic scale
[1–10]. Besides the numerical simulations, many different
methods were also used to treat the SOC problems. Dy-
namical mean-field theory [11] gives a unified description
of some stochastic SOC systems including the BTW sand-
pile model and the forest fire model [12]. Langevin-type
approaches [13] have been used on a phenomenological
basis. Furthermore, a real space renormalization group
method [14] provided good estimates of the exponents.
Early experimental studies of real sandpiles led to clear
disagreement with the numerical models: bounded distri-
butions of avalanche sizes were observed instead of the ex-
pected power-law behaviour [15–19]. Using grains of rice,
Frette et al. [20] showed that the dynamics exhibit self-
organized critical behaviour in one case (for grains with
a large aspect ratio) but not in another (for less elon-
gated grains). To take into account the changes in the
local slopes observed in the rice-pile experiment, Chris-
tensen et al. proposed a rice-pile model, hereafter called
Oslo model [21–23], where the critical slope for each site
is a dynamical variable. Here we propose a model for a
pile of granular material where we introduce randomness
in the relaxation rule and use two types of driving mech-
anisms: fixed-position driving where the grains are added
on the top of the pile, and random-position driving where
the grains are added at randomly chosen sites. On the one
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hand, this model permits the investigation of the transi-
tion between the 1D BTW model and the rice-pile model,
and on the other hand the study of the effect of the driving
mechanisms on the size and transit-time avalanche expo-
nents.

2 Model

To take into account the changes in the local slopes in
the rice pile experiment, Christensen et al. [21] proposed
a rice-pile model where the critical slope for each site is
a dynamical variable. The rice-pile model is based on a
linear array of cells labelled by i, i = 1, 2, ..., L, with in-
teger variable h(i) assigned to each of them, with a wall
at i = 0 and an open boundary at i = L + 1. Here h(i)
is called the local height of the rice-pile at site i. Its local
slope is defined as z(i) = h(i)− h(i+ 1) for i = 1, 2, ..., L.
Initially, the system is empty, i.e., h(i) = 0 ∀i. The profile
of the pile evolves through two mechanisms, perturbation
and relaxation, with a separation in time scales i.e. the
rate of deposition is slow enough that any avalanche, trig-
gered by a deposited grain, will have ended before a new
grain is added. This constitutes one time step.

At each time step, a grain is added to a column i:

h(i)→ h(i) + 1. (1)

With the dropping of rice grains, a rice pile is built up.
Whenever there is an active column, i.e., z(i) > zc(i),
where zc(i) is a slope threshold, one grain of rice will be
transferred from this column to its right neighbour accord-
ing to the following equation:

h(i)→ h(i)− 1
h(i+ 1)→ h(i+ 1) + 1, (2)



130 The European Physical Journal B

and all the unstable sites topple in parallel. The critical
slope zc(i) of a site i remains unchanged if the site is sta-
ble but assumes a new value 1 or 2 every time a rice grain
on this site has toppled. This toppling rule is equivalent to
taking an annealed randomness in the threshold. The top-
pling of one or more sites is called an avalanche event, and
during the avalanche no grains are added to the pile. The
avalanche stops when the system reaches a stable state
with z(i) ≤ zc(i) ∀i. Our motivation is to investigate the
transition between the 1D BTW model and the rice-pile
model.

We modify the rice-pile model as follows: Whenever,
z(i) ≤ zc(i) ∀i, the pile is stable and there is no diffu-
sion of particles. If, at site i, z(i) > zc(i) (active site),
where zc(i) takes randomly a value 1 or 2 from a uniform
distribution D(zc(i)) = 1/2[δ(zc(i) − 1) + δ(zc(i) − 2)],
where δ is a Dirac function, then this site topples with
a probability which depends on its slope z(i), namely: if
z(i) = 2 and the site i is an active one, it topples with a
probability p1. Furthermore, if z(i) > 2, i.e. z(i) > zc(i)
for any value taken by zc(i), it topples with probability
p2. Notice that if we set p1 = 0 and p2 = 1, the model
becomes the BTW model with the critical slope zc = 2,
and if we set p1 = p2 = 1, it is just the rice-pile model
or Oslo rice-pile model if the driving mechanism is at the
top of the pile. When a grain is dropped on the left-end
site of the pile, it may make the site unstable. The site
topples and transfers a grain of rice to its right neigh-
bour and so on. And in this way avalanches occur. In this
paper, we will take p2 equal to 1 and p1 ≤ p2 because
the higher the slope, the higher is the jump probability.
So by varying p1 from 0 to 1, we can change the model
from the 1D BTW sandpile model to the rice pile model
in a continuous manner. Each avalanche, due to a single
added particle, is characterised by its size, denoted by S
and defined as the number of topplings. Furthermore, as
in reference [21], each grain is associated with a transit
time T , which is defined as the time the particle spent in
the pile, defined by T = Tout − Tin, where Tout and Tin

denote the output and the input times of the grain; these
times are measured in the unit of additions of grains. Thus
we measure the size of the relaxation event S, the transit-
time T , and their corresponding distributions. In the next
section, we will consider two ways of driving mechanisms:
one way is to add grains to the top of the pile (site i = 1)
as it is usually made in the Oslo rice-pile model as well
as in the experiment. Another way is to add grains to
randomly chosen positions (random driving mechanism).
This latter way introduces an external stochasticity in our
model. Before going ahead, let us recall some differences
between the 1D BTW model and the Oslo rice-pile model.
The internal randomness in the critical slopes makes the
rice-pile model different from the 1D BTW model. For
arbitrary initial conditions, the system reaches a station-
ary state characterised by power laws. However, in the 1D
BTW where the randomness is external and the critical
slope zc(i) is constant, the system reaches a stationary
trivial behaviour.
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Fig. 1. The average transportation velocity < v >, as a func-
tion of the probability p1 for several values of the system size
and in the case of a random driving mechanism.

3 Numerical simulations

We have performed extensive numerical simulations and
investigated the effects of the parameter p1 and of driv-
ing mechanisms on the behaviour of the system. In the
following we will take p2 = 1 and p1 less than p2 because
the higher the slope, the higher is the jump probability.
So by varying p1 from 0 to 1, we can – in a continuous
manner – change the model from the 1D BTW sandpile
model to the rice-pile model. Let us first study the trans-
port properties of the model when the external grains are
added to randomly chosen positions. In Figure 1, we show
the average transportation velocity of grains, defined as
< v >= L/ < T >, as a function of p1. For the case p1 = 0
(the 1D BTW model), after a certain transient time a sta-
tionary state is reached where every newly-added grain
will slip out of the pile instantly, thus the transit time is
T = 0, and then the average velocity is infinite. By in-
creasing p1 larger than some value, pc

1, where pc
1 depends

on the system size, the velocity < v > becomes constant,
and tends to 0 when L becomes sufficiently large. The nu-
merical results lead us to consider that pc

1 → 0 as L→∞.
For p1 = 0+, < v > = 1, independent of the system size.
So there is a sharp transition from < v > =∞ for p1 = 0
to < v > = 1 for p1 = 0+. This transition can be under-
stood by the following argument. It is clear that when p1

is exactly 0, no newly-added grain will stay in the pile as
long the stationary state is reached. So T = 0 for every
grain and hence < T > = 0. When p1 = 0+ some grains
can be buried in the surface layer of the pile. These grains
will stay in the pile for a very long time. Once they slip
out of the pile, these grains, although very few in num-
ber, will make a significant contribution to < T > since
their transit times are extremely large. It is the existence
of these grains that makes < T > assume a finite value
for p1 = 0+. Between p1 = 0+ and p1 = pc

1, there is a
crossover behaviour of < v >, which is due to finite size
effects. Since we expect pc

1 → 0 when L→∞, we can also
expect that for an infinite system the transition takes place
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Fig. 2. The average velocity < v > as a function of the system
size L, for p1 = 0.8. The open squares correspond to the fixed-
position driving. The open circles correspond to the random-
position driving.

at p1 = 0 from < v > =∞ to < v > = 0. Thus the sharp
transition here is induced by tiny disorder. In Figure 2, we
plot the average velocity as a function of the system size
for p1 = 0.8 and for the two types of driving mechanisms.
It is clear that for a large system (L > 100), the average
velocity < v > scales as L−γ . When the grains are added
on the top of the pile γ = 0.23 [24], while γ = 0.18 when
the grains are added to randomly chosen sites. Therefore,
the average velocity decreases with the system size, which
is due to the increase in the active zone depth with sys-
tem size, as explained by Christensen et al. [21]. We have
also studied the avalanche size and the transit-time distri-
butions for different values of the probability p1 > pc

1 and
for a random driving mechanism. In Figure 3a we plot our
simulation data for p1 = 0.8 and for different system sizes.
The distribution is a power law with the presence of a peak
close to the cutoff size Sc ∝ LD. This is a finite-size effect
which is due to the possibility of forming a supercritical
state which then relaxes through a very large avalanche.
The distribution follows the scaling form:

P (S,L) = S−τG(S/LD), (3)

the best collapse is obtained with the exponents τ =
1.20 ± 0.05 and D = 1.25 ± 0.05, cf. Figure 3b. When
the grains are added on the top of the pile τ = 1.53±0.05
and D = 2.20± 0.05 [21,24]. Thus by adding an external
stochasticity (random driving mechanism) to the internal
randomness (critical slope is dynamical variable), the sys-
tem belongs to another universality class characterised by
τ = 1.20±0.05. By using the fact that the average number
of toppling is < S > = L in the critical state, it follows
from equation (3) that:

τ =
2D − 1
D

, (4)

in agreement with our numerical results. Furthermore, the
distribution functions of transit times P (T,L) for several
values of system sizes are shown in Figure 4. A data col-
lapse for different system sizes L is obtained when plotting
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Fig. 3. (a) Log-Log plot of the avalanche size distributions
for several values of the system size L with p1 = 0.8 and in
the case of the random driving position. (b) Data collapse of
the curves displayed in (a) according to equation (3) with the
exponents τ = 1.20, D = 1.25.
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Fig. 4. Log-Log plot of the transit-time distribution for several
values of the system size with p1 = 0.8 and in the case of the
random driving position.

LβP (T,L) against the rescaled variable T/Lν

P (T,L) = L−βF (T/Lν), (5)

with ν = 1.20 ± 0.15 and β = 1.20 ± 0.15. The scaling
function F is of the form F(x) = const. for small x and
F (x) ∝ x−α for larger x, ν is a critical exponent expressing
how the crossover transit time Tc scales with the system



132 The European Physical Journal B

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

(a)

slope = -1.2

  p1=0.5
  p1=1

P
(S

,L
=

5
0

)

S

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2 (b)

slope = -2.35

  p1=0.5
  p1=1

P
(T

,L
=

5
0

)

T

Fig. 5. (a) Log-Log plot of the avalanche size distribution in
the case of the random driving position. The best fit gives the
slope τ = 1.20. (b) Log-Log plot of the transit time distribution
in the case of the random driving position. The best fit gives
the slope α = 2.35.

size. The power-law exponent α for large transit time is
obtained as α = 2.35. Figure 5a shows the avalanche-size
distributions for two values of probability p1 greater than a
critical value pc

1. Figure 5b gives the corresponding transit
time distributions. It is clear that the size and the transit
time exponents are insensitive to the values of the proba-
bility p1 (p1 > pc

1). The same conclusion can be drawn in
the case where the grains are added on the top of the pile,
see Figures 6a and 6b. Thus, the SOC state is insensitive
to the variation in the jumping probability p1 > 0. Finally,
if we compare the two driving mechanisms, we see clearly
that a random external perturbation leads to a decrease
of the value of τ because by random driving there is less
chance of big avalanches occurring.

4 Conclusion

In summary, we have investigated a one-dimensional rice
pile model where the sites with higher slopes have more
chance to topple (with a probability p2 = 1) while the
sites with lower slopes topple with a probability p1 ≤ p2.
It is found that for a sufficiently large system, there is
a sharp transition between the trivial behaviour and the
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Fig. 6. (a) Log-Log plot of the avalanche size distribution in
the case of fixed-position driving. The best fit gives the slope
τ = 1.53. (b) Log-Log plot of the transit time distribution in
the case of fixed-position driving. The best fit gives the slope
α = 2.40.

SOC behaviour at p1 = 0. In the case where the ex-
ternal grains are added to the top of the pile, the self-
organized critical model belongs to the known universal-
ity class that is characterised by an avalanche exponent
τ = 1.53 ± 0.05, whereas the model with random driv-
ing mechanism belongs to a new universality class charac-
terised by τ = 1.20± 0.05.
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